RHIC Detector Workshop: R&D for Future Detectors and Upgrades

BNL, November 13-14, 2001

Convenor's Report: Working Group on Gas Tracking Detectors

Itzhak Tserruya

Outline

- Introduction
 - * General guidelines
 - * Two detectors under consideration
- An HBD for low-mass e⁺e⁻pairs measurement</sup>
- A compact, fast, multipurpose TPC
- R&D program

General Guidelines

For each proposed new detector, this working group tried to answer the following questions:

- What is the **physics motivation** for the new detector?
- What are the **system specifications** to perform this physics?
- What is/are the **technological choices**?
- Is there need for an **R&D** phase? If yes:
 - what are the goals of the R&D?
 - provide an estimate of the time/cost of R&D phase
- Give an estimate of time/cost for detector implementation
- Does the new detector have any <u>impact on the collider</u>? For example does it require high luminosity? Or can the new detector cope with an increase of RHIC luminosity by one order of magnitude?
- How does the proposed detector fit into existing experiment? What is the additional data volume? Does it impact on the DAQ?

Hadron Blind Detector (HBD) for PHENIX *

- **♦** Physics Motivation:
 - * thermal radiation, CSR
 - * update
- ♦ Principle simulations ‡ System specifications ‡ Concept ‡
 - ‡ R&D Program

* see: PHENIX Technical Note 391:

"Proposal for a Hadron Blind detector for PHENIX"

http://www.phenix.bnl.gov/phenix/WWW/forms/info/view.html

Low-mass Dileptons: Main CERN Result

Strong enhancement of low-mass e⁺e⁻ pairs in A-A collisions (wrt to expected yield from known sources)

Enhancement factor (.25 < m < .7 GeV/ c^2): 2.6 \pm 0.5 (stat) \pm 0.6 (syst)

No enhancement in pp and pA collisions

Interpretations

Add

 $\pi\pi$ annihilation: $\pi^+\pi^- \ddagger \gamma^* \ddagger e^+e^-$ (thermal radiation from HG)

Cross section dominated by pole at the ρ mass of the π em form factor:

$$F_{\pi}^{2}(m) = \frac{m_{\rho}^{4}}{(m_{\rho}^{2} - m^{2}) + m_{\rho}^{2} \Gamma_{\rho}^{2}}$$

ρ-meson broadening

ρ scattering off baryons(Rapp, Wambach et al)

Plus

Dropping ρ-meson mass

Itzhak Tserruya RH

or

Onset of Chiral Symmetry Restoration?

What happens as chiral symmetry is restored? Dropping masses or line broadening? Quark-hadron duality down to low-masses $m \sim 0.4 - 0.5 \text{ MeV/c}^2$?

Mass Resolution

(Wambach et al.)

Possibility to discriminate

between the scenarios of:

ρ-meson dropping-mass and ρ-meson broadening

Excellent mass resolution

is needed: $\frac{\sigma_m}{m} = 1\%$ at the

ω peak.

Low-mass e⁺e⁻ Pairs: Prospects at RHIC

At 160 GeV/u baryon density is the dominant factor for dropping masses

$$\frac{\mathbf{m}^*}{\mathbf{m}} = \left[1 - \left(\frac{\mathbf{T}}{\mathbf{T}_c}\right)^2\right]^{1/3} \left[1 - 0.2 \frac{\tilde{\mathbf{n}}}{\tilde{\mathbf{n}}_B}\right]$$

and also for spectral shape broadening.

♦ What can we expect at RHIC?

Nov 13,20

	SPS	RHIC
	(Pb-Pb)	(Au-Au)
$dN(\overline{p})/dy$	5	20.1
Produced baryons $(p, \overline{p}, n, \overline{n})$	20	80.4
$p-\overline{p}$	27	8.6
Participating nucleons $(p - \overline{p}) A/Z$	68	21.4
Total baryon density Olimber 1	orkshop8	101.8

Low-mass e⁺e⁻ pairs in PHENIX: the problem

♦ 'Single' e-tracks/evt in the two central arms:

$$N_e = (dN/d\eta)_{\pi^{\circ}} * acc * BR * f(p_T \ge 200)$$

350 1/2 x .7 0.012+0.02 0.32 = 1.2 tracks/evt

♦ Combinatorial Background:

$$B = 1/2 * 1/2 * N_e^2 e^{-N_e} = 0.1 \text{ pairs/evt}$$

- **Expected Signal (m>200, pt>200):** $S = 4.2 * 10^{-4}$ pairs/evt
- ♦ Signal to Background: S/B = 1/250
- **♦ Goal: improve S/B** by at least two orders of magnitude

Strategy

• Exploit opening angle distribution

Need:

- * field free region near vertex
- * detector with e-ID

 For a 90% rejection need opening angle cut up to ~200 mrad

Signal and Background

- **♦ Inner detector:**
 - * perfect e-id $\varepsilon = 100 \%$
 - * perfect dhr = 0 mrad
 - * π rejection = ∞

 $S/B \sim 10$

♦ Plus veto area:

$$|\delta\eta| \le 0.40 \text{ and } \delta\phi \le 100^{\circ}$$

 $S/B \sim 30$

♦ Under more realistic conditions (including open charm):

$$S/B \sim 1-3$$

HBD in PHENIX

- Compensate magnetic field with inner coil (B=0 for r ≤ 50-60cm)
- Compact HBD in the inner region
 Specifications

* Electron efficiency ≥ 90%

* Modest π rejection ~ 200

* Double hit recognition ≥ 90%

Detector Configuration

Many open questions but also many backup options

Detector configuration: options

Response to:								- /-			
Detector configuration				electrons			hadrons		e/π		
Radiator	Photo-	Detector	Window	Shades	$\gamma_{ m th}$	$N_{ m pe}$	R _{blob}	DHR	N_{e}	X _o	rejection
gas	cathode	gas		Rad/Det			cm	%	G/L	%	
CF ₄	Trans.	Same	No	No/No	28	40	1.8	>90	4/1	1.3	>104
CF_4	Trans.	Same	No	Yes/No	28	35	1.8	>90	1/1	1.3	>104
CF ₄ /Ne (1:1)	Trans.	Same	No	No/No	40	30	1.3	~90	2/1	1.1	>104
CF ₄ /Ne (9:1)	Trans.	Same	No	No/No	70	20	1.0	~70	1/1	0.9	350
CF ₄	Trans.	CF ₄ /Ne	Yes	No/No	28	40	1.8	>90	4/5	1.6	700
CF ₄	Trans.	CF ₄ /Ne	Yes	Yes/Yes	28	35	1.8	>90	1/3	1.7	>104
CF_4	Trans.	CF /He	Yes	Yes/Yes	28	35	1.8	>90	1/3	1.7	>104
CH ₄	Refl.	Same	No	No/No	34	8	1.5	~40	0/<1	0.6	>6
CH ₄	Trans.	Same	No	No/No	34	6	1.5	~30	0/<1	0.8	>2.5
CF ₄	SemiT.	Any	Yes	No/No	28	10	1.8	~50	2/10	1.6	Fails
Ne	Trans.	Same	No	No/No	86	20	0.8	~70	?/<1	0.9	?

Detector concept exists!

Enough back-up options to solve potential problems

CF₄ + GEM + CsI work!

Nov 13,200

A Fast Compact TPC for PHENIX and STAR

PHENIX Motivation

- * Stand-alone tracking detector (2π in azimuth, $|\eta| \sim 0.7$) ‡ improve jet recognition in pp, improve high p_T measurement in heavy-ion, extend tracking to lower p_T .
- * Low-momentum e ID \ddagger rejection of π^{o} Dalitz and conversions \ddagger low-mass $e^{+}e^{-}$ pairs measurement.
- * Help to resolve displaced verticies from charm and B decay

• STAR Motivation:

- * Replace in 4-5 years the main STAR tracking detector (TPC) to:
 - Study "rare" observables together with other new detectors (RICH, TRD, TOF...?)
 - **V** Cope with expected increase of RHIC luminosity

System specifications

• Low mass electron pairs

Same as for HBD:

Dalitz rejection > 90%
Single electron efficiency > 90%
Pion misidentification probability < 1/200
(provided by dE/dx in TPC for p < 200 MeV/c)

• Tracking

Coverage over 2π in azimuth, $|\eta| \sim 0.75$

Provide tracking at low momentum (< 200 MeV/c) with dp/p ~ 0.02 p Must have sufficient two track resolution to handle high track densities Must operate in high luminosity heavy ion and pp environment

Secondary verticies

Need to resolve secondary verticies at the level of $\sim 50 \, \mu m$ when used in conjunction with silicon vertex detector.

What are the technological choices?

Fast, compact TPC

Short drift region, fast drift gas (e.g., CF₄)
Good spatial resolution (highly segmented readout plane)
Readout with micropattern detector (GEM, µMega) or MWPC w/pads
Highly integrated readout electronics

• **Hybrid concept**:

HBD and TPC together as a single detector (N. Smirnov)

 CF_4 (or CH_4) may serve as:

- * the ionization gas for the TPC
- * the radiator gas for the HBD
- * the operating gas for the readout detector.

A TPC/HBD in PHENIX

R & D programme (I)

Generic Detector R&D

- * Drift velocity, diffusion and dE/dx in CF₄
- * CF₄ scintillation and timing
- * CsI / CF₄ bandwidth
- * CF₄ mixtures with Ne or Ar
- * Gain in GEM for stable operation
- * Aging of CsI and GEM in CF₄
- * Readout detector:
 - options: GEM or μMegas or MWPC?
 - configuration: 3 GEM or 2GEM + MWPC?
- * Response to electrons and hadrons (N_{pe} per electron and per mip)

R & D programme (II)

• FEE

- * Front end electronics specifications
- * Readout granularity
- * Design of integrated readout electronics

Simulations

- * More realistic Monte Carlo studies of HBD
- * Include HBD in MC optimize response
- * Optimize magnetic field configuration
- * HBD in presence of some residual magnetic field
- * Is the TPC a replacement for the HBD? If not, can the TPC help the HBD by providing additional rejection?